3.20 \(\int \frac{1-x^4}{1+b x^4+x^8} \, dx\)

Optimal. Leaf size=511 \[ \frac{\sqrt{2-\sqrt{2-b}} \log \left (-\sqrt{2-\sqrt{2-b}} x+x^2+1\right )}{8 \sqrt{2-b}}-\frac{\sqrt{2-\sqrt{2-b}} \log \left (\sqrt{2-\sqrt{2-b}} x+x^2+1\right )}{8 \sqrt{2-b}}-\frac{\sqrt{\sqrt{2-b}+2} \log \left (-\sqrt{\sqrt{2-b}+2} x+x^2+1\right )}{8 \sqrt{2-b}}+\frac{\sqrt{\sqrt{2-b}+2} \log \left (\sqrt{\sqrt{2-b}+2} x+x^2+1\right )}{8 \sqrt{2-b}}-\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2-b}}-2 x}{\sqrt{\sqrt{2-b}+2}}\right )}{4 \sqrt{2-\sqrt{2-b}} \sqrt{2-b}}+\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{2-b}+2}-2 x}{\sqrt{2-\sqrt{2-b}}}\right )}{4 \sqrt{\sqrt{2-b}+2} \sqrt{2-b}}+\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2-b}}+2 x}{\sqrt{\sqrt{2-b}+2}}\right )}{4 \sqrt{2-\sqrt{2-b}} \sqrt{2-b}}-\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{2-b}+2}+2 x}{\sqrt{2-\sqrt{2-b}}}\right )}{4 \sqrt{\sqrt{2-b}+2} \sqrt{2-b}} \]

[Out]

-(Sqrt[2 + b]*ArcTan[(Sqrt[2 - Sqrt[2 - b]] - 2*x)/Sqrt[2 + Sqrt[2 - b]]])/(4*Sqrt[2 - Sqrt[2 - b]]*Sqrt[2 - b
]) + (Sqrt[2 + b]*ArcTan[(Sqrt[2 + Sqrt[2 - b]] - 2*x)/Sqrt[2 - Sqrt[2 - b]]])/(4*Sqrt[2 + Sqrt[2 - b]]*Sqrt[2
 - b]) + (Sqrt[2 + b]*ArcTan[(Sqrt[2 - Sqrt[2 - b]] + 2*x)/Sqrt[2 + Sqrt[2 - b]]])/(4*Sqrt[2 - Sqrt[2 - b]]*Sq
rt[2 - b]) - (Sqrt[2 + b]*ArcTan[(Sqrt[2 + Sqrt[2 - b]] + 2*x)/Sqrt[2 - Sqrt[2 - b]]])/(4*Sqrt[2 + Sqrt[2 - b]
]*Sqrt[2 - b]) + (Sqrt[2 - Sqrt[2 - b]]*Log[1 - Sqrt[2 - Sqrt[2 - b]]*x + x^2])/(8*Sqrt[2 - b]) - (Sqrt[2 - Sq
rt[2 - b]]*Log[1 + Sqrt[2 - Sqrt[2 - b]]*x + x^2])/(8*Sqrt[2 - b]) - (Sqrt[2 + Sqrt[2 - b]]*Log[1 - Sqrt[2 + S
qrt[2 - b]]*x + x^2])/(8*Sqrt[2 - b]) + (Sqrt[2 + Sqrt[2 - b]]*Log[1 + Sqrt[2 + Sqrt[2 - b]]*x + x^2])/(8*Sqrt
[2 - b])

________________________________________________________________________________________

Rubi [A]  time = 0.358509, antiderivative size = 511, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1421, 1169, 634, 618, 204, 628} \[ \frac{\sqrt{2-\sqrt{2-b}} \log \left (-\sqrt{2-\sqrt{2-b}} x+x^2+1\right )}{8 \sqrt{2-b}}-\frac{\sqrt{2-\sqrt{2-b}} \log \left (\sqrt{2-\sqrt{2-b}} x+x^2+1\right )}{8 \sqrt{2-b}}-\frac{\sqrt{\sqrt{2-b}+2} \log \left (-\sqrt{\sqrt{2-b}+2} x+x^2+1\right )}{8 \sqrt{2-b}}+\frac{\sqrt{\sqrt{2-b}+2} \log \left (\sqrt{\sqrt{2-b}+2} x+x^2+1\right )}{8 \sqrt{2-b}}-\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2-b}}-2 x}{\sqrt{\sqrt{2-b}+2}}\right )}{4 \sqrt{2-\sqrt{2-b}} \sqrt{2-b}}+\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{2-b}+2}-2 x}{\sqrt{2-\sqrt{2-b}}}\right )}{4 \sqrt{\sqrt{2-b}+2} \sqrt{2-b}}+\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2-b}}+2 x}{\sqrt{\sqrt{2-b}+2}}\right )}{4 \sqrt{2-\sqrt{2-b}} \sqrt{2-b}}-\frac{\sqrt{b+2} \tan ^{-1}\left (\frac{\sqrt{\sqrt{2-b}+2}+2 x}{\sqrt{2-\sqrt{2-b}}}\right )}{4 \sqrt{\sqrt{2-b}+2} \sqrt{2-b}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - x^4)/(1 + b*x^4 + x^8),x]

[Out]

-(Sqrt[2 + b]*ArcTan[(Sqrt[2 - Sqrt[2 - b]] - 2*x)/Sqrt[2 + Sqrt[2 - b]]])/(4*Sqrt[2 - Sqrt[2 - b]]*Sqrt[2 - b
]) + (Sqrt[2 + b]*ArcTan[(Sqrt[2 + Sqrt[2 - b]] - 2*x)/Sqrt[2 - Sqrt[2 - b]]])/(4*Sqrt[2 + Sqrt[2 - b]]*Sqrt[2
 - b]) + (Sqrt[2 + b]*ArcTan[(Sqrt[2 - Sqrt[2 - b]] + 2*x)/Sqrt[2 + Sqrt[2 - b]]])/(4*Sqrt[2 - Sqrt[2 - b]]*Sq
rt[2 - b]) - (Sqrt[2 + b]*ArcTan[(Sqrt[2 + Sqrt[2 - b]] + 2*x)/Sqrt[2 - Sqrt[2 - b]]])/(4*Sqrt[2 + Sqrt[2 - b]
]*Sqrt[2 - b]) + (Sqrt[2 - Sqrt[2 - b]]*Log[1 - Sqrt[2 - Sqrt[2 - b]]*x + x^2])/(8*Sqrt[2 - b]) - (Sqrt[2 - Sq
rt[2 - b]]*Log[1 + Sqrt[2 - Sqrt[2 - b]]*x + x^2])/(8*Sqrt[2 - b]) - (Sqrt[2 + Sqrt[2 - b]]*Log[1 - Sqrt[2 + S
qrt[2 - b]]*x + x^2])/(8*Sqrt[2 - b]) + (Sqrt[2 + Sqrt[2 - b]]*Log[1 + Sqrt[2 + Sqrt[2 - b]]*x + x^2])/(8*Sqrt
[2 - b])

Rule 1421

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[(-2*d)/e -
 b/c, 2]}, Dist[e/(2*c*q), Int[(q - 2*x^(n/2))/Simp[d/e + q*x^(n/2) - x^n, x], x], x] + Dist[e/(2*c*q), Int[(q
 + 2*x^(n/2))/Simp[d/e - q*x^(n/2) - x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2
- 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] &&  !GtQ[b^2 - 4*a*c, 0]

Rule 1169

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1-x^4}{1+b x^4+x^8} \, dx &=-\frac{\int \frac{\sqrt{2-b}+2 x^2}{-1-\sqrt{2-b} x^2-x^4} \, dx}{2 \sqrt{2-b}}-\frac{\int \frac{\sqrt{2-b}-2 x^2}{-1+\sqrt{2-b} x^2-x^4} \, dx}{2 \sqrt{2-b}}\\ &=\frac{\int \frac{\sqrt{2-\sqrt{2-b}} \sqrt{2-b}-\left (-2+\sqrt{2-b}\right ) x}{1-\sqrt{2-\sqrt{2-b}} x+x^2} \, dx}{4 \sqrt{2-\sqrt{2-b}} \sqrt{2-b}}+\frac{\int \frac{\sqrt{2-\sqrt{2-b}} \sqrt{2-b}+\left (-2+\sqrt{2-b}\right ) x}{1+\sqrt{2-\sqrt{2-b}} x+x^2} \, dx}{4 \sqrt{2-\sqrt{2-b}} \sqrt{2-b}}+\frac{\int \frac{\sqrt{2+\sqrt{2-b}} \sqrt{2-b}-\left (2+\sqrt{2-b}\right ) x}{1-\sqrt{2+\sqrt{2-b}} x+x^2} \, dx}{4 \sqrt{2+\sqrt{2-b}} \sqrt{2-b}}+\frac{\int \frac{\sqrt{2+\sqrt{2-b}} \sqrt{2-b}+\left (2+\sqrt{2-b}\right ) x}{1+\sqrt{2+\sqrt{2-b}} x+x^2} \, dx}{4 \sqrt{2+\sqrt{2-b}} \sqrt{2-b}}\\ &=-\left (\frac{1}{8} \left (-1+\frac{2}{\sqrt{2-b}}\right ) \int \frac{1}{1-\sqrt{2+\sqrt{2-b}} x+x^2} \, dx\right )-\frac{1}{8} \left (-1+\frac{2}{\sqrt{2-b}}\right ) \int \frac{1}{1+\sqrt{2+\sqrt{2-b}} x+x^2} \, dx+\frac{1}{8} \left (1+\frac{2}{\sqrt{2-b}}\right ) \int \frac{1}{1-\sqrt{2-\sqrt{2-b}} x+x^2} \, dx+\frac{1}{8} \left (1+\frac{2}{\sqrt{2-b}}\right ) \int \frac{1}{1+\sqrt{2-\sqrt{2-b}} x+x^2} \, dx+\frac{\sqrt{2-\sqrt{2-b}} \int \frac{-\sqrt{2-\sqrt{2-b}}+2 x}{1-\sqrt{2-\sqrt{2-b}} x+x^2} \, dx}{8 \sqrt{2-b}}-\frac{\sqrt{2-\sqrt{2-b}} \int \frac{\sqrt{2-\sqrt{2-b}}+2 x}{1+\sqrt{2-\sqrt{2-b}} x+x^2} \, dx}{8 \sqrt{2-b}}-\frac{\sqrt{2+\sqrt{2-b}} \int \frac{-\sqrt{2+\sqrt{2-b}}+2 x}{1-\sqrt{2+\sqrt{2-b}} x+x^2} \, dx}{8 \sqrt{2-b}}+\frac{\sqrt{2+\sqrt{2-b}} \int \frac{\sqrt{2+\sqrt{2-b}}+2 x}{1+\sqrt{2+\sqrt{2-b}} x+x^2} \, dx}{8 \sqrt{2-b}}\\ &=\frac{\sqrt{2-\sqrt{2-b}} \log \left (1-\sqrt{2-\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}-\frac{\sqrt{2-\sqrt{2-b}} \log \left (1+\sqrt{2-\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}-\frac{\sqrt{2+\sqrt{2-b}} \log \left (1-\sqrt{2+\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}+\frac{\sqrt{2+\sqrt{2-b}} \log \left (1+\sqrt{2+\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}+\frac{1}{4} \left (-1-\frac{2}{\sqrt{2-b}}\right ) \operatorname{Subst}\left (\int \frac{1}{-2-\sqrt{2-b}-x^2} \, dx,x,-\sqrt{2-\sqrt{2-b}}+2 x\right )+\frac{1}{4} \left (-1-\frac{2}{\sqrt{2-b}}\right ) \operatorname{Subst}\left (\int \frac{1}{-2-\sqrt{2-b}-x^2} \, dx,x,\sqrt{2-\sqrt{2-b}}+2 x\right )-\frac{1}{4} \left (1-\frac{2}{\sqrt{2-b}}\right ) \operatorname{Subst}\left (\int \frac{1}{-2+\sqrt{2-b}-x^2} \, dx,x,-\sqrt{2+\sqrt{2-b}}+2 x\right )-\frac{1}{4} \left (1-\frac{2}{\sqrt{2-b}}\right ) \operatorname{Subst}\left (\int \frac{1}{-2+\sqrt{2-b}-x^2} \, dx,x,\sqrt{2+\sqrt{2-b}}+2 x\right )\\ &=-\frac{\sqrt{2+\sqrt{2-b}} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2-b}}-2 x}{\sqrt{2+\sqrt{2-b}}}\right )}{4 \sqrt{2-b}}+\frac{\sqrt{2-\sqrt{2-b}} \tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2-b}}-2 x}{\sqrt{2-\sqrt{2-b}}}\right )}{4 \sqrt{2-b}}+\frac{\sqrt{2+\sqrt{2-b}} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2-b}}+2 x}{\sqrt{2+\sqrt{2-b}}}\right )}{4 \sqrt{2-b}}-\frac{\sqrt{2-\sqrt{2-b}} \tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2-b}}+2 x}{\sqrt{2-\sqrt{2-b}}}\right )}{4 \sqrt{2-b}}+\frac{\sqrt{2-\sqrt{2-b}} \log \left (1-\sqrt{2-\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}-\frac{\sqrt{2-\sqrt{2-b}} \log \left (1+\sqrt{2-\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}-\frac{\sqrt{2+\sqrt{2-b}} \log \left (1-\sqrt{2+\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}+\frac{\sqrt{2+\sqrt{2-b}} \log \left (1+\sqrt{2+\sqrt{2-b}} x+x^2\right )}{8 \sqrt{2-b}}\\ \end{align*}

Mathematica [C]  time = 0.0246006, size = 57, normalized size = 0.11 \[ -\frac{1}{4} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8+1\& ,\frac{\text{$\#$1}^4 \log (x-\text{$\#$1})-\log (x-\text{$\#$1})}{\text{$\#$1}^3 b+2 \text{$\#$1}^7}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^4)/(1 + b*x^4 + x^8),x]

[Out]

-RootSum[1 + b*#1^4 + #1^8 & , (-Log[x - #1] + Log[x - #1]*#1^4)/(b*#1^3 + 2*#1^7) & ]/4

________________________________________________________________________________________

Maple [C]  time = 0.003, size = 44, normalized size = 0.1 \begin{align*}{\frac{1}{4}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}+{{\it \_Z}}^{4}b+1 \right ) }{\frac{ \left ( -{{\it \_R}}^{4}+1 \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}+{{\it \_R}}^{3}b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^4+1)/(x^8+b*x^4+1),x)

[Out]

1/4*sum((-_R^4+1)/(2*_R^7+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8+_Z^4*b+1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x^{4} - 1}{x^{8} + b x^{4} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8+b*x^4+1),x, algorithm="maxima")

[Out]

-integrate((x^4 - 1)/(x^8 + b*x^4 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 1.51297, size = 3725, normalized size = 7.29 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8+b*x^4+1),x, algorithm="fricas")

[Out]

-sqrt(sqrt(1/2)*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4)))*arctan(1/2
*sqrt(1/2)*(b^2 + (b^3 - 6*b^2 + 12*b - 8)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - 4*b + 4)*sqrt(x^2 + 1/2*sq
rt(1/2)*(b^2 + (b^3 - 6*b^2 + 12*b - 8)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - 2*b)*sqrt(((b^2 - 4*b + 4)*sq
rt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4)))*sqrt(sqrt(1/2)*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)/
(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4)))*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8))
- b)/(b^2 - 4*b + 4)) - 1/2*sqrt(1/2)*((b^3 - 6*b^2 + 12*b - 8)*x*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + (b^
2 - 4*b + 4)*x)*sqrt(sqrt(1/2)*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b +
4)))*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4))) + sqrt(sqrt(1/2)*sqrt
(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + b)/(b^2 - 4*b + 4)))*arctan(-1/2*(sqrt(1/2)*(b^2 -
 (b^3 - 6*b^2 + 12*b - 8)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - 4*b + 4)*sqrt(x^2 + 1/2*sqrt(1/2)*(b^2 - (b
^3 - 6*b^2 + 12*b - 8)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - 2*b)*sqrt(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3
- 6*b^2 + 12*b - 8)) + b)/(b^2 - 4*b + 4)))*sqrt(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + b)
/(b^2 - 4*b + 4)) + sqrt(1/2)*((b^3 - 6*b^2 + 12*b - 8)*x*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - (b^2 - 4*b
+ 4)*x)*sqrt(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + b)/(b^2 - 4*b + 4)))*sqrt(sqrt(1/2)*sq
rt(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + b)/(b^2 - 4*b + 4)))) + 1/4*sqrt(sqrt(1/2)*sqrt(
-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + b)/(b^2 - 4*b + 4)))*log(1/2*((b^2 - 4*b + 4)*sqrt(
(b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b + 2)*sqrt(sqrt(1/2)*sqrt(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 1
2*b - 8)) + b)/(b^2 - 4*b + 4))) + x) - 1/4*sqrt(sqrt(1/2)*sqrt(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 +
12*b - 8)) + b)/(b^2 - 4*b + 4)))*log(-1/2*((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b + 2)*sq
rt(sqrt(1/2)*sqrt(-((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + b)/(b^2 - 4*b + 4))) + x) - 1/4*s
qrt(sqrt(1/2)*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4)))*log(1/2*((b^
2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) + b - 2)*sqrt(sqrt(1/2)*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)
/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4))) + x) + 1/4*sqrt(sqrt(1/2)*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)
/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4)))*log(-1/2*((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b -
 8)) + b - 2)*sqrt(sqrt(1/2)*sqrt(((b^2 - 4*b + 4)*sqrt((b + 2)/(b^3 - 6*b^2 + 12*b - 8)) - b)/(b^2 - 4*b + 4)
)) + x)

________________________________________________________________________________________

Sympy [A]  time = 2.26308, size = 76, normalized size = 0.15 \begin{align*} - \operatorname{RootSum}{\left (t^{8} \left (65536 b^{4} - 524288 b^{3} + 1572864 b^{2} - 2097152 b + 1048576\right ) + t^{4} \left (256 b^{3} - 1024 b^{2} + 1024 b\right ) + 1, \left ( t \mapsto t \log{\left (1024 t^{5} b^{2} - 4096 t^{5} b + 4096 t^{5} + 4 t b - 4 t + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**4+1)/(x**8+b*x**4+1),x)

[Out]

-RootSum(_t**8*(65536*b**4 - 524288*b**3 + 1572864*b**2 - 2097152*b + 1048576) + _t**4*(256*b**3 - 1024*b**2 +
 1024*b) + 1, Lambda(_t, _t*log(1024*_t**5*b**2 - 4096*_t**5*b + 4096*_t**5 + 4*_t*b - 4*_t + x)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x^{4} - 1}{x^{8} + b x^{4} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8+b*x^4+1),x, algorithm="giac")

[Out]

integrate(-(x^4 - 1)/(x^8 + b*x^4 + 1), x)